Atmospheric Dynamics Analysis of Floods, Landslides, and Strong Winds in Semarang and Demak on March 13, 2024

Authors

  • Sayful Amri Program Studi Klimatologi, Sekolah Tinggi Meteorologi Klimatologi dan Geofisika, Banten, Indonesia
  • Giarno Giarno Program Studi Klimatologi, Sekolah Tinggi Meteorologi Klimatologi dan Geofisika, Banten, Indonesia

DOI:

https://doi.org/10.33474/ejbst.v10i1.594

Keywords:

Extreme Rain, Flooding, Landslides, MCS

Abstract

On March 13, 2024, the regions of Semarang and Demak experienced severe flooding, landslides, and strong winds due to extreme weather characterized by heavy rainfall, thunderstorms, and gusty winds. Previous studies analyzing extreme weather have not thoroughly explored all the contributing factors. This study aims to investigate a comprehensive range of factors, from global to local scales, including cloud physics, to improve early weather warning systems, particularly during similar weather disturbances. A quantitative descriptive analysis was conducted, focusing on ENSO, Dipole Mode (DM), MJO, CENS, SST, MSLP, gradient wind streamlines, LLMT and its divergence, upper-air instability, cloud physics, precipitation, and tidal patterns. The results show that the MJO and Equatorial Rossby waves increased moisture levels across Indonesia. Additionally, the tropical cyclone seedling 91S in the southern Indian Ocean of Java increased the Asian monsoon flow, leading to a cross-equatorial flow and increased moisture transport from the South China Sea to the northern coast of Java. Warm SSTs, unstable upper-air conditions, and LLMT convergence in Semarang and its surroundings further triggered the development of a Mesoscale Convective System, resulting in extreme rainfall accompanied by thunderstorms and strong winds, which led to hydrometeorological disasters in Semarang and Demak on March 13, 2024.

 

Keywords: extreme rain, flooding, landslides, MCS

References

A. BMKG, Pemutakhiran Zona Musim di Indonesia. BMKG, 2022.

J. Slingo, “MONSOONS | Overview,” dalam Encyclopedia of Atmospheric Sciences, Elsevier, 2003, hlm. 1365–1370. doi: 10.1016/B0-12-227090-8/00235-9.

M.-S. Ahn, D. Kim, Y.-G. Ham, dan S. Park, “Role of Maritime Continent Land Convection on the Mean State and MJO Propagation,” Journal of Climate, vol. 33, no. 5, hlm. 1659–1675, Mar 2020, doi: 10.1175/JCLI-D-19-0342.1.

Z. Li, W. Yu, K. Li, B. Liu, dan G. Wang, “Modulation of interannual variability of tropical cyclone activity over Southeast Indian Ocean by negative IOD phase,” Dynamics of Atmospheres and Oceans, vol. 72, hlm. 62–69, Des 2015, doi: 10.1016/j.dynatmoce.2015.10.006.

S. C. Peatman, J. Schwendike, C. E. Birch, J. H. Marsham, A. J. Matthews, dan G.-Y. Yang, “A local-to-large scale view of Maritime Continent rainfall: control by ENSO, MJO and equatorial waves,” Journal of Climate, hlm. 1–52, Sep 2021, doi: 10.1175/JCLI-D-21-0263.1.

S. Amri, F. R. Fajary, dan T. W. Hadi, “Analysis of Synoptic Disturbance in Maritim Continent Using Spherical Harmonics Transformation Method,” J.Agromet, vol. 34, no. 2, hlm. 89–99, Sep 2020, doi: 10.29244/j.agromet.34.2.89-99.

E. Puspapertiwi, “Banjir Semarang, Berikut Sejumlah Wilayah yang Tergenang dan Terdampak Longsor,” 2024. Diakses: 8 Agustus 2024. [Daring]. Tersedia pada: https://www.kompas.com/tren/read/2024/03/14/124500065/banjir-semarang-berikut-sejumlah-wilayah-yang-tergenang-dan-terdampak?page=all

N. Zaidi, “Banjir Demak: 88 Desa Terdampak, 12.982 Orang Mengungsi,” 2024. Diakses: 8 Agustus 2024. [Daring]. Tersedia pada: https://regional.kompas.com/read/2024/03/17/201812478/banjir-demak-88-desa-terdampak-12982-orang-mengungsi

B. Puspita Dewi, “Pengaruh Cross-Equatorial Northerly Surge terhadap Kejadian Banjir di Jakarta (Studi Kasus 31 Desember 2019 - 1 Januari 2020),” JIIF, vol. 6, no. 1, hlm. 41–52, Feb 2022, doi: 10.24198/jiif.v6i1.37914.

F. Asfahanif dan S. Amri, “Analisis Peristiwa Angin Kencang dengan Citra Satelit Himawari-8 (Studi Kasus: Bangkalan, 17 Oktober 2021),” 2022.

R. Hidayat dan S. Kizu, “Influence of the Madden–Julian Oscillation on Indonesian rainfall variability in austral summer,” Intl Journal of Climatology, vol. 30, no. 12, hlm. 1816–1825, Okt 2010, doi: 10.1002/joc.2005.

M. I. Lélé, L. M. Leslie, dan P. J. Lamb, “Analysis of Low-Level Atmospheric Moisture Transport Associated with the West African Monsoon,” Journal of Climate, vol. 28, no. 11, hlm. 4414–4430, Jun 2015, doi: 10.1175/JCLI-D-14-00746.1.

comet meted, “Tephigram Mastery,” 2013. Diakses: 8 Agustus 2024. [Daring]. Tersedia pada: https://www.meted.ucar.edu/mesoprim/tephigram/navmenu.php?tab=2&page=5-1-0&type=flash

S. Y. Lim, C. Marzin, P. Xavier, C.-P. Chang, dan B. Timbal, “Impacts of Boreal Winter Monsoon Cold Surges and the Interaction with MJO on Southeast Asia Rainfall,” Journal of Climate, vol. 30, no. 11, hlm. 4267–4281, Jun 2017, doi: 10.1175/JCLI-D-16-0546.1.

G. Giarno dan Z. Nanaruslana, “The Precursors of High Rainfall Intensity During June in Southern Central Java: A Case Study of Flash Floods 18 June 2016 in Purworejo,” MAUSAM, vol. 73, no. 4, hlm. 877–896, Sep 2022, doi: 10.54302/mausam.v73i4.5375.

B. Dewi, S. Amri, M. Robi, V. Dpo, dan S. Novria, “The influence of cross-equatorial northerly surge in the western maritime continent,” E3S Web Conf., vol. 464, hlm. 02005, 2023, doi: 10.1051/e3sconf/202346402005.

Published

2024-08-16

How to Cite

Amri, S., & Giarno, G. (2024). Atmospheric Dynamics Analysis of Floods, Landslides, and Strong Winds in Semarang and Demak on March 13, 2024. Jurnal Ilmiah Biosaintropis (Bioscience-Tropic), 10(1), 77–89. https://doi.org/10.33474/ejbst.v10i1.594

Issue

Section

Article (Makalah)